Oscillation of solutions of some higher order linear differential equations
نویسندگان
چکیده
We shall assume that reader is familiar with the fundamental results and the standard notations of the Nevanlinna value distribution theory of meromorphic functions(see [11,14]). In addition, we will use the notation σ(f) to denote the order of growth of entire function f(z), σ2(f) to denote the hyper-order of f(z), λ(f)(λ2(f)) to denote the exponent(hyper-exponent) of convergence of the zero-sequence of f(z) and λ(f)(λ2(f)) to denote exponent(hyper-exponent) of convergence of distinct zero sequence of meromorphic function f(z). We also define
منابع مشابه
ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملBasic results on distributed order fractional hybrid differential equations with linear perturbations
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملSolutions for some non-linear fractional differential equations with boundary value problems
In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators. Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems.
متن کاملGeneralized H-differentiability for solving second order linear fuzzy differential equations
In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...
متن کاملOscillation Properties of Higher Order Impulsive Delay Differential Equations
This paper studies the oscillation properties of higher order impulsive delay differential equations, and some sufficient conditions for all bounded solutions of this kind of higher order impulsive delay differential equations to be nonoscillatory are obtained by using a comparison theorem with corresponding nonimpulsive differential equations. AMS subject classification: 34C10, 34C15.
متن کامل